In this module we will study automatic test pattern generation (ATPG) using sensitization–propagation -justification approach. We will first introduce the basics of. 1. VLSI Design Verification and Testing. Combinational ATPG Basics. Mohammad Tehranipoor. Electrical and Computer Engineering. University of Connecticut. Boolean level. • Classical ATPG algorithms reach their limits. ➢ There is a need for more efficient ATPG tools! 6. Circuits. • Basic gates. – AND, OR, EXOR, NOT.

Author: Kigasho Meztile
Country: Nicaragua
Language: English (Spanish)
Genre: Business
Published (Last): 16 January 2005
Pages: 92
PDF File Size: 15.28 Mb
ePub File Size: 17.12 Mb
ISBN: 324-5-21230-455-2
Downloads: 66531
Price: Free* [*Free Regsitration Required]
Uploader: Kesar

ATPG efficiency is another important consideration that is influenced by the fault model under consideration, the type of circuit under test full scansynchronous sequential, or asynchronous sequentialthe level of abstraction used to represent the circuit under test gate, register-transfer, switchand the required test quality.

If one driver dominates the other driver in a bridging situation, the dominant driver forces the logic to the other one, in such case a dominant bridging fault is used. The logic values observed at the device’s primary outputs, while applying a test pattern to some device under test DUTare called basicss output of bwsics test pattern. However, these test generators, combined with low-overhead DFT techniques such as partial scanhave shown a certain degree of success in testing large designs.

Second, it is possible that a detection pattern exists, but the algorithm cannot find one. This model is used to describe faults for CMOS logic gates.

This allows using a relatively simple vector matrix to quickly test all the comprising FFs, as well as to trace failures to specific FFs. A defect is an error caused in a device during the manufacturing basica. The single stuck-at fault model is structural because it is defined based on a structural gate-level circuit model. Basic combinational ATPG method allows testing the individual nodes or flip-flops of the logic circuit without being concerned with the operation of the overall circuit.

Combinational ATPG Basics

A fault model is a mathematical description of how a defect alters design behavior. ATPG is a topic that is covered by several conferences throughout the year. Even a simple stuck-at fault requires a sequence of vectors for detection in a sequential circuit.

Testing very-large-scale integrated circuits with a high fault coverage is a difficult task because of complexity. The stuck-at fault model is a logical fault model because no delay information is associated with the fault definition. During design validation, engineers can no longer ignore the effects of crosstalk and power supply noise on reliability and performance.


Automatic test pattern generation – Wikipedia

Views Read Edit View history. The ATPG process for a targeted fault consists of two phases: In stuck-short, a transistor behaves as it is always conducts or stuck-onand stuck-open is when a transistor never conducts current or stuck-off. Sequential-circuit ATPG searches for a sequence of test vectors to detect a particular fault through the space of all possible test vector sequences.

Historically, ATPG has focused on a set of faults derived from a gate-level fault model. ATPG can fail to find a test for a particular fault in at least two cases. The bwsics example of this is a redundant circuit, designed such that no single fault causes the output to change.

Automatic test pattern generation

For designs that are sensitive to area or performance overhead, the solution of using sequential-circuit ATPG and partial scan offers an attractive alternative to the popular full-scan solution, which is based on combinational-circuit ATPG. Bridging to VDD or Vss is equivalent to stuck at fault model.

Removing equivalent faults from entire set of faults is called fault collapsing. For nanometer technology, many current design validation problems are becoming manufacturing test problems as well, so new fault-modeling and ATPG techniques will be needed. Current fault modeling and vector-generation techniques are giving way to new models and techniques that consider timing information during test generation, that are scalable to larger designs, and that can capture extreme design conditions.

A short circuit between two signal lines is called bridging faults. In such a circuit, any single fault will be inherently undetectable. This page was last edited on 23 Novemberat First, the fault may be intrinsically undetectable, such that no patterns exist that can detect that particular fault.

However, according to reported results, no single strategy or heuristic out-performs others for all applications or circuits.

Therefore, many different ATPG methods have been developed to address combinational and sequential circuits. The output of a test pattern, when testing a fault-free device that works exactly as designed, is called the expected output of that test pattern. Retrieved from ” https: Any single fault from the set of equivalent faults can represent the whole set. In the latter case, dominant driver keeps its value, while the other one gets the AND or OR value of its own and the dominant driver. From Wikipedia, the free encyclopedia.

The effectiveness of ATPG is measured by the number of modeled defects, or fault modelsdetectable and by the number of generated patterns. By using this site, you agree to the Terms of Use and Privacy Policy.


Various search strategies and heuristics have been devised to find a shorter sequence, or to find a sequence faster. As design trends move toward nanometer technology, new manufacture testing problems are emerging. These metrics generally indicate test quality higher with more fault detections basjcs test application time higher with more patterns. The generated patterns are used to test semiconductor devices after manufacture, or to assist with determining the cause of failure failure analysis [1].

At transistor level, a transistor maybe stuck-short or stuck-open. In the past several decades, the most popular fault model used in practice is the single stuck-at fault model. During test, a so-called scan-mode is enabled forcing all flip-flops FFs to be connected in a simplified fashion, effectively bypassing their interconnections as intended during normal operation.

Also, due to the presence of memory elements, the controllability and observability of the internal signals in a sequential circuit are in general much more difficult than those in a combinational logic circuit. In this model, one of the signal lines in a circuit is assumed to be stuck at a fixed logic value, regardless of what inputs are supplied to the circuit.

Fault activation establishes a signal value at the fault model site that is opposite of the value produced by the fault model. Equivalent faults produce the same faulty behavior for all input patterns. It is also called a permanent fault model because the faulty effect is assumed to be permanent, in contrast to intermittent faults which occur seemingly at random and transient faults which occur sporadically, perhaps depending on operating conditions e.

This observation implies that a test generator should include a comprehensive set of heuristics. Hence, if a circuit has n signal lines, there are potentially 2n stuck-at faults defined on the circuit, of which some can be viewed as being equivalent to others.

A fault is said to be detected by a test pattern if the output of that test pattern, when testing a device that has only that one fault, is different than the expected output.